Level 1 - Single Byte - Basic (Puzzle 3)
Below is a puzzle involving 24 input buffers and their transformed outputs. Each buffer is exactly 64 bytes, shown in hex. Your task: Figure out the logic of the transformation used to go from the INPUT to the OUTPUT. Then, provide a Python function that, given any new 64-byte buffer, will produce the correct transformed output. Here are the 24 input (SRC) buffers in hex (one line per buffer): INPUT #01: 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #02: ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #03: 01000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #04: 02000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #05: 80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #06: aa000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #07: 00ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #08: f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #09: 0fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #10: 55ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #11: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f INPUT #12: fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e0dfdedddcdbdad9d8d7d6d5d4d3d2d1d0cfcecdcccbcac9c8c7c6c5c4c3c2c1c0 INPUT #13: aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55 INPUT #14: 55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa INPUT #15: f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0 INPUT #16: 0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f INPUT #17: 01010101010101010202020202020202040404040404040408080808080808081010101010101010202020202020202040404040404040408080808080808080 INPUT #18: 01010101020202020202020203030303040404040505050508080808090909090101010102020202020202020303030304040404050505050808080809090909 INPUT #19: 0102040810204080010204081020408001020408102040800102040810204080fefdfbf7efdfbf7ffefdfbf7efdfbf7ffefdfbf7efdfbf7ffefdfbf7efdfbf7f INPUT #20: 48656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c2057 INPUT #21: 4c6f72656d20697073756d20646f6c6f722073697420616d65742c20636f6e73656374657475722061646970697363696e6720656c69742c2073656420646f20 INPUT #22: 0101020305080d1522375990e97962db3d18556dc22ff12011314273b528dd05e2e7c9b07929a2cb6d38a5dd825fe140216182e36548adf5a29739d009d9e2bb INPUT #23: 789b34caf54f2e220acd941e71b88d5836866d0d858b63549e94be2cacc67f5b7ef28f2d9903959f63d3d893dce752779c84162917ec8ff1af4a6422d367e18d INPUT #24: c5d71484f8cf9bf4b76f47904730804b9e3225a9f133b5dea168f4e2851f072fcc00fcaa7ca62061717a48e52e29a3fa379a953faa6893e32ec5a27b945e605f And here are the corresponding transformed outputs (DST) in hex: OUTPUT #01: 07070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707 OUTPUT #02: f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7 OUTPUT #03: 07070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707 OUTPUT #04: 07070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707 OUTPUT #05: 87070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707 OUTPUT #06: a7070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707 OUTPUT #07: 07f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7 OUTPUT #08: f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7 OUTPUT #09: 07f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7 OUTPUT #10: 57f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7 OUTPUT #11: 07070707070707070707070707070707171717171717171717171717171717172727272727272727272727272727272737373737373737373737373737373737 OUTPUT #12: f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7e7e7e7e7e7e7e7e7e7e7e7e7e7e7e7e7d7d7d7d7d7d7d7d7d7d7d7d7d7d7d7d7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c7 OUTPUT #13: a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757 OUTPUT #14: 57a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a757a7 OUTPUT #15: f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7 OUTPUT #16: 07070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707 OUTPUT #17: 07070707070707070707070707070707070707070707070707070707070707071717171717171717272727272727272747474747474747478787878787878787 OUTPUT #18: 07070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707 OUTPUT #19: 0707070717274787070707071727478707070707172747870707070717274787f7f7f7f7e7d7b777f7f7f7f7e7d7b777f7f7f7f7e7d7b777f7f7f7f7e7d7b777 OUTPUT #20: 47676767672727576777676727274767676767272757677767672727476767676727275767776767272747676767672727576777676727274767676767272757 OUTPUT #21: 47677767672767777777672767676767772777677727676767772727676767776767776777777727676767776777676767672767676777272777676727676727 OUTPUT #22: 070707070707071727375797e77767d737175767c727f72717374777b727d707e7e7c7b77727a7c76737a7d78757e747276787e76747a7f7a79737d707d7e7b7 OUTPUT #23: 779737c7f747272707c7971777b7875737876707878767579797b727a7c7775777f787279707979767d7d797d7e757779787172717e787f7a7476727d767e787 OUTPUT #24: c7d71787f7c797f7b767479747378747973727a7f737b7d7a767f7e787170727c707f7a777a72767777747e72727a7f737979737a76797e727c7a77797576757 Instructions: - Return just your best possible approximation as a small python function that takes a 64 byte array as input, and returns the 64 byte array as output. - Remember, the transformation is the same for all 24 buffers. - The function will be scored by the number of buffers that are correctly transformed (as shown in the 24 outputs). - And it also will be tested on another set of 24 hidden input buffers not shown in the prompt. - Do not include anything else in your response, no introduction text or explanations. Example Output: def transform(data: bytes) -> bytes: # Transform logic return bytes
Copy Puzzle Prompt
Submit your solution:
def transform(data: bytes) -> bytes: # Your solution here return data
Submit
Leaderboard