Level 2 - Single Byte - Advanced (Puzzle 2)
Below is a puzzle involving 24 input buffers and their transformed outputs. Each buffer is exactly 64 bytes, shown in hex. Your task: Figure out the logic of the transformation used to go from the INPUT to the OUTPUT. Then, provide a Python function that, given any new 64-byte buffer, will produce the correct transformed output. Here are the 24 input (SRC) buffers in hex (one line per buffer): INPUT #01: 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #02: ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #03: 01000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #04: 02000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #05: 80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #06: aa000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #07: 00ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #08: f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #09: 0fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #10: 55ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #11: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f INPUT #12: fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e0dfdedddcdbdad9d8d7d6d5d4d3d2d1d0cfcecdcccbcac9c8c7c6c5c4c3c2c1c0 INPUT #13: aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55 INPUT #14: 55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa INPUT #15: f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0 INPUT #16: 0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f INPUT #17: 01010101010101010202020202020202040404040404040408080808080808081010101010101010202020202020202040404040404040408080808080808080 INPUT #18: 01010101020202020202020203030303040404040505050508080808090909090101010102020202020202020303030304040404050505050808080809090909 INPUT #19: 0102040810204080010204081020408001020408102040800102040810204080fefdfbf7efdfbf7ffefdfbf7efdfbf7ffefdfbf7efdfbf7ffefdfbf7efdfbf7f INPUT #20: 48656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c2057 INPUT #21: 4c6f72656d20697073756d20646f6c6f722073697420616d65742c20636f6e73656374657475722061646970697363696e6720656c69742c2073656420646f20 INPUT #22: 0101020305080d1522375990e97962db3d18556dc22ff12011314273b528dd05e2e7c9b07929a2cb6d38a5dd825fe140216182e36548adf5a29739d009d9e2bb INPUT #23: 789b34caf54f2e220acd941e71b88d5836866d0d858b63549e94be2cacc67f5b7ef28f2d9903959f63d3d893dce752779c84162917ec8ff1af4a6422d367e18d INPUT #24: c5d71484f8cf9bf4b76f47904730804b9e3225a9f133b5dea168f4e2851f072fcc00fcaa7ca62061717a48e52e29a3fa379a953faa6893e32ec5a27b945e605f And here are the corresponding transformed outputs (DST) in hex: OUTPUT #01: 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 OUTPUT #02: ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff OUTPUT #03: 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 OUTPUT #04: 20000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 OUTPUT #05: 08000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 OUTPUT #06: aa000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 OUTPUT #07: 00ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff OUTPUT #08: 0fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff OUTPUT #09: f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff OUTPUT #10: 55ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff OUTPUT #11: 00102030405060708090a0b0c0d0e0f001112131415161718191a1b1c1d1e1f102122232425262728292a2b2c2d2e2f203132333435363738393a3b3c3d3e3f3 OUTPUT #12: ffefdfcfbfaf9f8f7f6f5f4f3f2f1f0ffeeedecebeae9e8e7e6e5e4e3e2e1e0efdedddcdbdad9d8d7d6d5d4d3d2d1d0dfcecdcccbcac9c8c7c6c5c4c3c2c1c0c OUTPUT #13: aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55 OUTPUT #14: 55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa OUTPUT #15: 0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f OUTPUT #16: f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0 OUTPUT #17: 10101010101010102020202020202020404040404040404080808080808080800101010101010101020202020202020204040404040404040808080808080808 OUTPUT #18: 10101010202020202020202030303030404040405050505080808080909090901010101020202020202020203030303040404040505050508080808090909090 OUTPUT #19: 1020408001020408102040800102040810204080010204081020408001020408efdfbf7ffefdfbf7efdfbf7ffefdfbf7efdfbf7ffefdfbf7efdfbf7ffefdfbf7 OUTPUT #20: 8456c6c6f6c20275f627c64612028456c6c6f6c20275f627c64612028456c6c6f6c20275f627c64612028456c6c6f6c20275f627c64612028456c6c6f6c20275 OUTPUT #21: c4f62756d60296073757d60246f6c6f627023796470216d65647c20236f6e63756364756475727021646960796373696e6760256c69647c2023756460246f602 OUTPUT #22: 101020305080d051227395099e9726bdd38155d62cf21f02111324375b82dd502e7e9c0b97922abcd6835add28f51e041216283e5684da5f2a79930d909d2ebb OUTPUT #23: 87b943ac5ff4e222a0dc49e1178bd8856368d6d058b83645e949ebc2ca6cf7b5e72ff8d2993059f9363d8d39cd7e2577c948619271cef81ffaa446223d761ed8 OUTPUT #24: 5c7d41488ffcb94f7bf67409740308b4e923529a1f335bed1a864f2e58f170f2cc00cfaac76a021617a7845ee2923aaf73a959f3aa86393ee25c2ab749e506f5 Instructions: - Return just your best possible approximation as a small python function that takes a 64 byte array as input, and returns the 64 byte array as output. - Remember, the transformation is the same for all 24 buffers. - The function will be scored by the number of buffers that are correctly transformed (as shown in the 24 outputs). - And it also will be tested on another set of 24 hidden input buffers not shown in the prompt. - Do not include anything else in your response, no introduction text or explanations. Example Output: def transform(data: bytes) -> bytes: # Transform logic return bytes
Copy Puzzle Prompt
Submit your solution:
def transform(data: bytes) -> bytes: # Your solution here return data
Submit
Leaderboard