Level 5 - State Introduction (Puzzle 4)
Below is a puzzle involving 24 input buffers and their transformed outputs. Each buffer is exactly 64 bytes, shown in hex. Your task: Figure out the logic of the transformation used to go from the INPUT to the OUTPUT. Then, provide a Python function that, given any new 64-byte buffer, will produce the correct transformed output. Here are the 24 input (SRC) buffers in hex (one line per buffer): INPUT #01: 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #02: ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #03: 01000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #04: 02000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #05: 80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #06: aa000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #07: 00ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #08: f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #09: 0fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #10: 55ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #11: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f INPUT #12: fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e0dfdedddcdbdad9d8d7d6d5d4d3d2d1d0cfcecdcccbcac9c8c7c6c5c4c3c2c1c0 INPUT #13: aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55 INPUT #14: 55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa INPUT #15: f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0 INPUT #16: 0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f INPUT #17: 01010101010101010202020202020202040404040404040408080808080808081010101010101010202020202020202040404040404040408080808080808080 INPUT #18: 01010101020202020202020203030303040404040505050508080808090909090101010102020202020202020303030304040404050505050808080809090909 INPUT #19: 0102040810204080010204081020408001020408102040800102040810204080fefdfbf7efdfbf7ffefdfbf7efdfbf7ffefdfbf7efdfbf7ffefdfbf7efdfbf7f INPUT #20: 48656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c2057 INPUT #21: 4c6f72656d20697073756d20646f6c6f722073697420616d65742c20636f6e73656374657475722061646970697363696e6720656c69742c2073656420646f20 INPUT #22: 0101020305080d1522375990e97962db3d18556dc22ff12011314273b528dd05e2e7c9b07929a2cb6d38a5dd825fe140216182e36548adf5a29739d009d9e2bb INPUT #23: 789b34caf54f2e220acd941e71b88d5836866d0d858b63549e94be2cacc67f5b7ef28f2d9903959f63d3d893dce752779c84162917ec8ff1af4a6422d367e18d INPUT #24: c5d71484f8cf9bf4b76f47904730804b9e3225a9f133b5dea168f4e2851f072fcc00fcaa7ca62061717a48e52e29a3fa379a953faa6893e32ec5a27b945e605f And here are the corresponding transformed outputs (DST) in hex: OUTPUT #01: 01010101010101010101010101010101010101010101010101010101010101010000000000000000000000000000000000000000000000000000000000000000 OUTPUT #02: 0000000000000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff OUTPUT #03: 01010101010101010101010101010101010101010101010101010101010101010100000000000000000000000000000000000000000000000000000000000000 OUTPUT #04: 01010101010101010101010101010101010101010101010101010101010101010200000000000000000000000000000000000000000000000000000000000000 OUTPUT #05: 01010101010101010101010101010101010101010101010101010101010101018000000000000000000000000000000000000000000000000000000000000000 OUTPUT #06: 0101010101010101010101010101010101010101010101010101010101010101aa00000000000000000000000000000000000000000000000000000000000000 OUTPUT #07: 000000000000000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff OUTPUT #08: 0000000000000000000000000000000000000000000000000000000000000000f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff OUTPUT #09: 00000000000000000000000000000000000000000000000000000000000000000fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff OUTPUT #10: 000000000000000000000000000000000000000000000000000000000000000055ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff OUTPUT #11: 2122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f40000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f OUTPUT #12: e0dfdedddcdbdad9d8d7d6d5d4d3d2d1d0cfcecdcccbcac9c8c7c6c5c4c3c2c1fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e0 OUTPUT #13: ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55 OUTPUT #14: 56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab56ab55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa OUTPUT #15: f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0 OUTPUT #16: 10101010101010101010101010101010101010101010101010101010101010100f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f OUTPUT #17: 11111111111111112121212121212121414141414141414181818181818181810101010101010101020202020202020204040404040404040808080808080808 OUTPUT #18: 020202020303030303030303040404040505050506060606090909090a0a0a0a0101010102020202020202020303030304040404050505050808080809090909 OUTPUT #19: fffefcf8f0e0c080fffefcf8f0e0c080fffefcf8f0e0c080fffefcf8f0e0c0800102040810204080010204081020408001020408102040800102040810204080 OUTPUT #20: 702d215870736d65222149666d6d702d215870736d65222149666d6d702d215848656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c OUTPUT #21: 666475667576732162656a716a74646a6f6821666d6a752d21746665216570214c6f72656d20697073756d20646f6c6f722073697420616d65742c20636f6e73 OUTPUT #22: e3e8cab17a2aa3cc6e39a6de8360e241226283e46649aef6a3983ad10adae3bc0101020305080d1522375990e97962db3d18556dc22ff12011314273b528dd05 OUTPUT #23: 7ff3902e9a0496a064d4d994dde853789d85172a18ed90f2b04b6523d468e28e789b34caf54f2e220acd941e71b88d5836866d0d858b63549e94be2cacc67f5b OUTPUT #24: cd01fdab7da72162727b49e62f2aa4fb389b9640ab6994e42fc6a37c955f6160c5d71484f8cf9bf4b76f47904730804b9e3225a9f133b5dea168f4e2851f072f Instructions: - Return just your best possible approximation as a small python function that takes a 64 byte array as input, and returns the 64 byte array as output. - Remember, the transformation is the same for all 24 buffers. - The function will be scored by the number of buffers that are correctly transformed (as shown in the 24 outputs). - And it also will be tested on another set of 24 hidden input buffers not shown in the prompt. - Do not include anything else in your response, no introduction text or explanations. Example Output: def transform(data: bytes) -> bytes: # Transform logic return bytes
Copy Puzzle Prompt
Submit your solution:
def transform(data: bytes) -> bytes: # Your solution here return data
Submit
Leaderboard