Level 6 - Complex Multi-Pass (Puzzle 1)
Below is a puzzle involving 24 input buffers and their transformed outputs. Each buffer is exactly 64 bytes, shown in hex. Your task: Figure out the logic of the transformation used to go from the INPUT to the OUTPUT. Then, provide a Python function that, given any new 64-byte buffer, will produce the correct transformed output. Here are the 24 input (SRC) buffers in hex (one line per buffer): INPUT #01: 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #02: ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #03: 01000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #04: 02000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #05: 80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #06: aa000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #07: 00ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #08: f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #09: 0fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #10: 55ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #11: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f INPUT #12: fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e0dfdedddcdbdad9d8d7d6d5d4d3d2d1d0cfcecdcccbcac9c8c7c6c5c4c3c2c1c0 INPUT #13: aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55 INPUT #14: 55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa INPUT #15: f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0 INPUT #16: 0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f INPUT #17: 01010101010101010202020202020202040404040404040408080808080808081010101010101010202020202020202040404040404040408080808080808080 INPUT #18: 01010101020202020202020203030303040404040505050508080808090909090101010102020202020202020303030304040404050505050808080809090909 INPUT #19: 0102040810204080010204081020408001020408102040800102040810204080fefdfbf7efdfbf7ffefdfbf7efdfbf7ffefdfbf7efdfbf7ffefdfbf7efdfbf7f INPUT #20: 48656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c2057 INPUT #21: 4c6f72656d20697073756d20646f6c6f722073697420616d65742c20636f6e73656374657475722061646970697363696e6720656c69742c2073656420646f20 INPUT #22: 0101020305080d1522375990e97962db3d18556dc22ff12011314273b528dd05e2e7c9b07929a2cb6d38a5dd825fe140216182e36548adf5a29739d009d9e2bb INPUT #23: 789b34caf54f2e220acd941e71b88d5836866d0d858b63549e94be2cacc67f5b7ef28f2d9903959f63d3d893dce752779c84162917ec8ff1af4a6422d367e18d INPUT #24: c5d71484f8cf9bf4b76f47904730804b9e3225a9f133b5dea168f4e2851f072fcc00fcaa7ca62061717a48e52e29a3fa379a953faa6893e32ec5a27b945e605f And here are the corresponding transformed outputs (DST) in hex: OUTPUT #01: 20002000200020002000200020002000200020002000200020002000200020002000200020002000200020002000200020002000200020002000200020002000 OUTPUT #02: 1f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f001f00 OUTPUT #03: 21012101210121012101210121012101210121012101210121012101210121012101210121012101210121012101210121012101210121012101210121012101 OUTPUT #04: 22022202220222022202220222022202220222022202220222022202220222022202220222022202220222022202220222022202220222022202220222022202 OUTPUT #05: a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080a080 OUTPUT #06: caeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaeacaea OUTPUT #07: 203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f203f OUTPUT #08: 100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f100f OUTPUT #09: 2f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f302f30 OUTPUT #10: 756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a756a OUTPUT #11: 200123002401270028012b002c012f00300133003401370038013b003c013f00400143004401470048014b004c014f00500153005401570058015b005c015f00 OUTPUT #12: 1f011c001b01180017011400130110000f010c000b0108000701040003010000ff01fc00fb01f800f701f400f301f000ef01ec00eb01e800e701e400e301e000 OUTPUT #13: cabf7500cabf7500cabf7500cabf7500cabf7500cabf7500cabf7500cabf7500cabf7500cabf7500cabf7500cabf7500cabf7500cabf7500cabf7500cabf7500 OUTPUT #14: 75bfca0075bfca0075bfca0075bfca0075bfca0075bfca0075bfca0075bfca0075bfca0075bfca0075bfca0075bfca0075bfca0075bfca0075bfca0075bfca00 OUTPUT #15: 10001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000 OUTPUT #16: 2f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f002f00 OUTPUT #17: 2100210021002100220022002200220024002400240024002800280028002800300030003000300040004000400040006000600060006000a000a000a000a000 OUTPUT #18: 21002100220022002200220023002300240024002500250028002800290029002100210022002200220022002300230024002400250025002800280029002900 OUTPUT #19: 2103270f3f7f1fbf9ebc98b080c0a0002103270f3f7f1fbf9ebc98b080c0a0001e03180f00ff20bfa1bca7b0bf409f001e03180f00ff20bfa1bca7b0bf409f00 OUTPUT #20: 68ed61ed622e6e199604880c4d0d65e06ce06f2363149b098501400068ed61ed622e6e199604880c4d0d65e06ce06f2363149b098501400068ed61ed622e6e19 OUTPUT #21: 6ce371f47939b020b326abeb6fe06ce37131a22bbfff7ef376e2aeee6de26cff7af96de87ce97b3bba3eb727ae3dbe37b93e7efb77fe6a2666f570f4b430bfff OUTPUT #22: 21002201240c2114560178c8c158da217c4431bc5e110040712042d1044cb194969178a83178ba51dc8441bc1e61600041c06261e48c415496217888a1585a81 OUTPUT #23: 9823779d88e7a9ebc12c98a637ef423a6cca476acf64e7932d99470bc721bec55b49e6ab1231843bb84bb300fcfb891ea20630794e42edfc3359dd9f6cebea47 OUTPUT #24: e51226829a75ceda0d82e5553262c2a9174500c9d88b5ea061e9fdff5a65420de1c1dd178b4d0d8c1d87efeaa4ed2e3463d96c33f971c2c18f6aa83387f97906 Instructions: - Return just your best possible approximation as a small python function that takes a 64 byte array as input, and returns the 64 byte array as output. - Remember, the transformation is the same for all 24 buffers. - The function will be scored by the number of buffers that are correctly transformed (as shown in the 24 outputs). - And it also will be tested on another set of 24 hidden input buffers not shown in the prompt. - Do not include anything else in your response, no introduction text or explanations. Example Output: def transform(data: bytes) -> bytes: # Transform logic return bytes
Copy Puzzle Prompt
Submit your solution:
def transform(data: bytes) -> bytes: # Your solution here return data
Submit
Leaderboard