Level 7 - Advanced Combinations (Puzzle 4)
Below is a puzzle involving 24 input buffers and their transformed outputs. Each buffer is exactly 64 bytes, shown in hex. Your task: Figure out the logic of the transformation used to go from the INPUT to the OUTPUT. Then, provide a Python function that, given any new 64-byte buffer, will produce the correct transformed output. Here are the 24 input (SRC) buffers in hex (one line per buffer): INPUT #01: 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #02: ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #03: 01000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #04: 02000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #05: 80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #06: aa000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 INPUT #07: 00ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #08: f0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #09: 0fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #10: 55ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff INPUT #11: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f INPUT #12: fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e0dfdedddcdbdad9d8d7d6d5d4d3d2d1d0cfcecdcccbcac9c8c7c6c5c4c3c2c1c0 INPUT #13: aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55 INPUT #14: 55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa55aa INPUT #15: f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0 INPUT #16: 0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f INPUT #17: 01010101010101010202020202020202040404040404040408080808080808081010101010101010202020202020202040404040404040408080808080808080 INPUT #18: 01010101020202020202020203030303040404040505050508080808090909090101010102020202020202020303030304040404050505050808080809090909 INPUT #19: 0102040810204080010204081020408001020408102040800102040810204080fefdfbf7efdfbf7ffefdfbf7efdfbf7ffefdfbf7efdfbf7ffefdfbf7efdfbf7f INPUT #20: 48656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c20576f726c64212048656c6c6f2c2057 INPUT #21: 4c6f72656d20697073756d20646f6c6f722073697420616d65742c20636f6e73656374657475722061646970697363696e6720656c69742c2073656420646f20 INPUT #22: 0101020305080d1522375990e97962db3d18556dc22ff12011314273b528dd05e2e7c9b07929a2cb6d38a5dd825fe140216182e36548adf5a29739d009d9e2bb INPUT #23: 789b34caf54f2e220acd941e71b88d5836866d0d858b63549e94be2cacc67f5b7ef28f2d9903959f63d3d893dce752779c84162917ec8ff1af4a6422d367e18d INPUT #24: c5d71484f8cf9bf4b76f47904730804b9e3225a9f133b5dea168f4e2851f072fcc00fcaa7ca62061717a48e52e29a3fa379a953faa6893e32ec5a27b945e605f And here are the corresponding transformed outputs (DST) in hex: OUTPUT #01: 02020202020202020202020202020202000000000000000000000000000000000303030303030303030303030303030301010101010101010101010101010101 OUTPUT #02: 01010101010101010101010101010101ffffffffffffffffffffffffffffffff0202020202020202020202020202020200000000000000000000000000000000 OUTPUT #03: 02020202020202020202020202020202010000000000000000000000000000000303030303030303030303030303030301010101010101010101010101010101 OUTPUT #04: 02020202020202020202020202020202020000000000000000000000000000000303030303030303030303030303030301010101010101010101010101010101 OUTPUT #05: 02020202020202020202020202020202800000000000000000000000000000000303030303030303030303030303030301010101010101010101010101010101 OUTPUT #06: 02020202020202020202020202020202aa0000000000000000000000000000000303030303030303030303030303030301010101010101010101010101010101 OUTPUT #07: 0101010101010101010101010101010100ffffffffffffffffffffffffffffff0202020202020202020202020202020200000000000000000000000000000000 OUTPUT #08: 01010101010101010101010101010101f0ffffffffffffffffffffffffffffff0202020202020202020202020202020200000000000000000000000000000000 OUTPUT #09: 010101010101010101010101010101010fffffffffffffffffffffffffffffff0202020202020202020202020202020200000000000000000000000000000000 OUTPUT #10: 0101010101010101010101010101010155ffffffffffffffffffffffffffffff0202020202020202020202020202020200000000000000000000000000000000 OUTPUT #11: 22232425262728292a2b2c2d2e2f3031000102030405060708090a0b0c0d0e0f333435363738393a3b3c3d3e3f4041421112131415161718191a1b1c1d1e1f20 OUTPUT #12: e1e0dfdedddcdbdad9d8d7d6d5d4d3d2fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0d2d1d0cfcecdcccbcac9c8c7c6c5c4c3f0efeeedecebeae9e8e7e6e5e4e3e2e1 OUTPUT #13: ac57ac57ac57ac57ac57ac57ac57ac57aa55aa55aa55aa55aa55aa55aa55aa55ad58ad58ad58ad58ad58ad58ad58ad58ab56ab56ab56ab56ab56ab56ab56ab56 OUTPUT #14: 57ac57ac57ac57ac57ac57ac57ac57ac55aa55aa55aa55aa55aa55aa55aa55aa58ad58ad58ad58ad58ad58ad58ad58ad56ab56ab56ab56ab56ab56ab56ab56ab OUTPUT #15: f2f2f2f2f2f2f2f2f2f2f2f2f2f2f2f2f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1f1 OUTPUT #16: 111111111111111111111111111111110f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f1212121212121212121212121212121210101010101010101010101010101010 OUTPUT #17: 12121212121212122222222222222222010101010101010102020202020202024343434343434343838383838383838305050505050505050909090909090909 OUTPUT #18: 030303030404040404040404050505050101010102020202020202020303030307070707080808080b0b0b0b0c0c0c0c0505050506060606090909090a0a0a0a OUTPUT #19: 00fffdf9f1e1c18100fffdf9f1e1c181010204081020408001020408102040800100fefaf2e2c2820100fefaf2e2c28202030509112141810203050911214181 OUTPUT #20: 712e225971746e6623224a676e6e712e48656c6c6f2c20576f726c6421204865235a72756f6724234b686f6f722f235a6d6d702d215870736d65222149666d6d OUTPUT #21: 676576677677742263666b726b75656b4c6f72656d20697073756d20646f6c6f716a23686f6c772f23766867236772237321746a7521626e66752d2164706f74 OUTPUT #22: e4e9cbb27b2ba4cd6f3aa7df8461e3420101020305080d1522375990e97962db246485e6684bb0f8a59a3cd30cdce5be3e19566ec330f22112324374b629de06 OUTPUT #23: 80f4912f9b0597a165d5da95dee95479789b34caf54f2e220acd941e71b88d589f87192c1aef92f4b24d6725d66ae49037876e0e868c64559f95bf2dadc7805c OUTPUT #24: ce02feac7ea82263737c4ae7302ba5fcc5d71484f8cf9bf4b76f47904730804b3a9d9842ad6b96e631c8a57e976163629f3326aaf234b6dfa269f5e386200830 Instructions: - Return just your best possible approximation as a small python function that takes a 64 byte array as input, and returns the 64 byte array as output. - Remember, the transformation is the same for all 24 buffers. - The function will be scored by the number of buffers that are correctly transformed (as shown in the 24 outputs). - And it also will be tested on another set of 24 hidden input buffers not shown in the prompt. - Do not include anything else in your response, no introduction text or explanations. Example Output: def transform(data: bytes) -> bytes: # Transform logic return bytes
Copy Puzzle Prompt
Submit your solution:
def transform(data: bytes) -> bytes: # Your solution here return data
Submit
Leaderboard